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Abstract—Parallel architectures are continually increasing in
performance and scale while underlying algorithmic infrastruc-
ture often fails to take full advantage of available compute
power. Within the context of MPI, irregular communication
patterns create bottlenecks in parallel applications. One common
bottleneck is the sparse dynamic data exchange, often required
when forming communication patterns within applications. There
is a large variety of approaches for these dynamic exchanges,
with optimizations implemented directly in parallel applications.
This paper proposes a novel API within an MPI eXtension
library, allowing applications to utilize the variety of provided
optimizations for sparse dynamic data exchange methods. Fur-
ther, the paper presents novel locality-aware sparse dynamic data
exchange algorithms. Finally, performance results show locality-
aware approaches achieve up to 128x over existing approaches
when exchanging only pattern of communication, and up to 54x
when exchanging data to be communicated as well.

Index Terms—sparse dynamic data exchange, MPI, HPC,
parallel performance, locality-aware, extension library

I. INTRODUCTION

Parallel architectures are continuously improving in scale,
computational power, and efficiency, allowing for increasingly
large and efficient high-performance computing (HPC) appli-
cations. Despite improvements in hardware capabilities, paral-
lel applications fail to fully utilize emerging hardware due to
the high costs associated with data movement and inter-process
communication. Standard communication algorithms treat all
communication as equal. However, the costs of various paths
of communication on current and emerging computers vary
greatly with relative locations of the sending and receiving
processes, with notable differences between intra-socket, inter-
socket, and inter-node communication.

A large number of parallel applications, including sparse
solvers and simulations, are bottlenecked by the performance
of irregular communication. This type of communication con-
sists of each process sending messages to a subset of other
processes, with the pattern of communication dependent on
the specific problem being solved, such as the sparsity pattern

of a given matrix. One bottleneck in irregular communication
is forming a communication pattern, determining the set of
processes to which each process must send as well as the set
from which it receives.

The resulting communication pattern is application depen-
dent. While structured problems require communication of a
set number of neighboring processes, often up to 26, irregular
communication can result in a range of patterns in which
processes communicate with anywhere between none of and
all of the other processes. Iterative methods and sparse solvers
take a sparse matrix as input, such that each process holds a
portion of the rows of the matrix. The communication pattern
is dependent on the sparsity pattern of the given matrix, with
each process receiving values corresponding to each non-
zero column within its local rows. The number of processes
with which each communicates can range from a handful to
thousands, depending on the particular system to be solved
and the number of processes across which it is partitioned.

Often, such as in the case of row-wise partitioned sparse
matrix operations, each process can use the local sparsity
pattern to determine what data should be received from other
processes, but there is insufficient information regarding pro-
cesses to which data should be sent. As a result, a crucial first
step in every communication phase is determining this pattern
of communication. The creation of this communication pattern
requires a sparse dynamic data exchange phase (SDDE). In
the context of the widely-used sparse matrix-vector multiply,
the cost of creating the communication pattern through the
SDDE often outweighs the cost of each subsequent step of
communication.

Algebraic multigrid (AMG) is one example of a solver
commonly bottlenecked by sparse matrix vector operations.
AMG consists of a hierarchy of sparse matrices, through-
out which solutions are iteratively refined through relaxation
before restricting the problem to a coarser level. The finest
level of the hierarchy is the system to be solved, with sparsity



pattern dependent on input. On each coarse level, the matrix
decreases in dimension, but increases in density, resulting
in increasingly large communication requirements near the
middle of the AMG hierarchy [1], [2]. Before SpMVs are
performed, the communication pattern must be discovered for
each increasingly dense matrix in the hierarchy through sparse
dynamic data exchanges.

There are two main use cases for sparse dynamic data
exchanges: exchanges with constant data sizes, such as de-
termining only the communication pattern and per-message
byte count, and variable-sized data exchanges, in which each
process must dynamically send a variable amount of data to
a subset of other processes. Cell adaptive mesh refinement
applications, such as CELLAR [3] require an SDDE with
constant size messages each time the mesh is altered. Each
process can locally determine the subset of processes to which
it must send and what data should be sent to each. However,
an SDDE is needed to determine from which processes each
receives, along with the size of each receive. This SDDE
requires constant message sizes as only message sizes must
be exchanged. A large majority of SDDEs, however, require
variable-sized exchanges. Linear solvers typically consist of
distributing sparse matrices across processes row-wise, allow-
ing each process to locally determine the receive portion of
the communication pattern. However, in this case, an SDDE
is needed for each process to find the subset of processes to
which it must send along with which data to send to each. As a
result, indices corresponding to these data values must be sent,
requiring each message to be equal to the size of subsequent
iterations of communication, and therefore variable.

There are many existing approaches for the sparse dynamic
data exchange, each hand implemented within applications that
rely on the SDDE [4]–[6]. There are two typical implementa-
tions for the sparse dynamic data exchange, which can apply to
both variable and constant data sizes. The personalized method
consists of all processes performing an MPI_Allreduce to
determine data exchange sizes before indices are dynamically
communicated. Alternatively, the non-blocking implementa-
tion proposed by Torsten et al. [7] dynamically exchanges
indices without the need for an initial reduction. The methods
each outperform the other in a subset of sparse dynamic data
exchange problems, with performance dependent on commu-
nication patterns, data exchange sizes, and process count. The
personalized method outperforms the non-blocking approach
in the case of SDDEs with very large message counts, as the
required MPI_Allreduce has minimal overhead. However,
SDDEs among a large set of processes in which there are
few messages perform better when implemented through the
non-blocking algorithm, avoiding the significant overhead of
the reduction. Applications of constant-sized SDDEs, such as
CELLAR, have further optimized the algorithm with one-sided
MPI remote-memory access (RMA) communication. As all
messages are of size count, each process p can use MPI_Put
to directly put its contribution into the destination process’s
receive buffer at position p × count. This implementation,
however, cannot be naturally extended to the variable-sized

SDDE operations.
This paper presents optimizations to existing sparse dy-

namic data exchanges through message aggregation. Locality-
aware optimizations greatly improve the performance and
scalability of irregular data exchanges within the context of
iterative methods. Communication within a region, such as
intra-socket, greatly outperforms inter-region messages, such
as inter-socket or inter-node. Locality-aware aggregation tech-
niques gather data within a region and minimize the number
of messages communicated between regions.

The contributions of this paper are the following.
• Presents a novel approach for locality-aware aggregation

within sparse and dynamic communication;
• Presents locality-aware versions for each of the standard

SDDE approaches;
• Presents new MPI eXtension APIs which allow for wrap-

ping the presented algorithms behind a single API, in-
creasing portability of the method, for dynamic exchanges
of constant- or variable-sized data;

• Presents a performance study of the new approaches
for both constant- and variable-sized dynamic exchanges
across the communication patterns of 35 separate Suites-
parse [8] matrices, and analyzes the speedup of the best
locality-aware approach over the best standard approach;

• For constant-sized exchanges, speedup is achieved for all
35 communication patterns, with average and maximum
speedups of 18x and 128x, respectively; and

• For variable-sized exchanges, speedup is achieved for 23
of the 35 matrices, with average and maximum speedups
of 14x and 54x, respectively.

Further, all SDDE algorithms presented in this paper have
been implemented behind the proposed API within the open-
source MPI eXtension library MPI Advance [9], allowing for
application programmers to replace current hand-implemented
SDDE methods within widely used solvers.

The remainder of the paper is outlined as follows. An
overview of the sparse dynamic data exchange problem and
related works are presented in Section II. A common MPI
eXtension (MPIX) API for SDDE algorithms is detailed in
Section III. Existing algorithms for the SDDE are detailed
in Section IV, while novel locality-aware extensions are
described in Section IV-D. Scaling studies are presented in
Section V, along with an analysis of when each algorithm
performs best. Finally, concluding remarks and future work
are discussed in Section VI.

II. BACKGROUND

The sparse dynamic data exchange problem consists of a set
of processes, each of which contains local data and is looking
to operate on the global collection of data. Each process must
receive a subset of the global data before it can complete its
local portion of the operation. Initially, every process knows
which global data it must receive from other processes. For
instance, consider a sparse matrix operation, in which the
sparse matrix and corresponding vectors are partitioned row-
wise across all available processes. Each process must receive



data corresponding to each non-zero column within its subset
of rows. However, before data can be exchanged, each process
must discover the subset of processes to which it must send all
or part of its local data. The problem is formalized as follows.

Definition 1 (Sparse Dynamic Data Exchange Problem)
Let Σ := {σ1, . . . , σn} be a collection of processes. For each
σi ∈ Σ, let there be an associated local data segment Di and
a subset Ai of Σ of processes from which σi needs to receive
data. The solution to the problem is a communication pattern
such that after execution, each σi ∈ Σ holds a copy of the set
{j | σi ∈ Aj}.

Often, parallel applications rely on the SDDE problem when
forming a communication pattern consisting of all processes
to which each rank sends and receives data, the sizes of these
messages, and the indices of the data to be communicated.
There are multiple existing approaches to forming these com-
munication patterns, including the personalized, non-blocking,
and RMA approaches, detailed in Section IV. The performance
of existing SDDE approaches consists of overhead costs, such
as window synchronization or reduction costs, as well as the
cost of point-to-point or one-sided dynamic communication of
data. The trade-offs between existing implementations depend
on whether the bottleneck of an SDDE is due to overhead or
transfer of data. Factors that determine this overhead include
the number of messages each process communicates, the
size of these messages, and the total number of processes.
Furthermore, the performance of the required point-to-point
or one-sided communication is dependent on the locality of
the messages, MPI implementation, and system architecture.

A. Parallel Matrix Partitioning

Applications and their underlying numerical methods, in-
cluding Krylov subspace solvers, algebraic multigrid, ILU, and
iterative smoothers, rely on sparse-matrix vector multiplication
(SpMV). Sparse matrices are typically partitioned row-wise,

Fig. 1: An example of a 4× 4 matrix and a vector distributed
across 4 processes.

so that each process holds a contiguous subset of rows of
the matrix along with corresponding vector values, as shown
in Figure 1. Consider a system with n rows split row-wise
across p processes. Each process holds n

p consecutive rows
of the matrix assuming the number of processes divides
the number of rows; otherwise, some processes will hold

one additional row. The vector values are partitioned simi-
larly. While processes hold entire sparse rows, each column
is considered either local or non-local, with local columns
corresponding to local vector values and non-local columns
corresponding to vector values local to other processes. There
are other partitioning strategies, such as column-wise or 2.5d
partitions [10], [11]. All SDDE strategies discussed in this
paper are applied to row-wise partitions of sparse matrices
and extend naturally to column-wise partitioning. While multi-
dimensional partitioning strategies are outside the scope of this
paper, the required SDDE problems are similar regardless of
the partitioning strategy.

B. Data Dependencies in Matrix-Vector Multiplications

Consider the matrix displayed in Figure 1. When performing
a matrix-vector product Av⃗ in parallel, each process must
retrieve vector entries corresponding to off-process non-zeroes
to perform the operation. For example, P2 needs vector entries
v0 and v3 in order to performs its local portion of the matrix-
vector product. A complete data dependency chart is given by
the following figure:

Fig. 2: The communication pattern associated with the exam-
ple matrix in Figure 1

As shown in this example, a process does not know in
advance which other processes need portions of its data as this
communication pattern is dependent on the associated sparsity
pattern. Therefore, before data can be exchanged, SDDE is
required to determine the subset of processes with which each
must communicate, along with which data must be commu-
nicated. Typically, this SDDE is performed once to create a
communication package, which is then used during subsequent
steps of communication. The SDDE requires communicating
all non-zero column indices, similar in size to communicating
the corresponding data within the vector during future steps
of communication. However, the SDDE consists of dynami-
cally receiving data with MPI_Probe operations, resulting in
overheads from unexpected messages [12], [13]. As a result,
the SDDE is often more expensive than subsequent exchanges
unless a number of iterations are performed.

Communication patterns for irregular data exchanges are
typically sparse, with each process communicating with a
small subset of the total number of processes, typically
O(log(n)) neighbors. For more dense communication patterns,



Send Variable Input/Output Definition Receive Variable Input/Output Definition
send_nnz Input Number of dynamic sends recv_nnz Input/Output Number of dynamic receives
send_size Input Size of dynamic sends recv_size Input/Output Size of dynamic receives

dest Input Destinations of messages src Output Sources of messages
sendcounts Input Send per-message count recvcounts Output Receive per-message count
sdispls Input Send displacements rdispls Input Receive displacements
sendtype Input Datatype of sends recvtype Output Datatype of receives
sendvals Input Data to send recvvals Output Data to receive

TABLE I: Variables required in MPIX sparse dynamic data exchange APIs. Red text indicates variables only required in the
variable SDDE, while black variables are required in both APIs.

all-to-all exchanges are more efficient, removing the need
for the SDDE phase and allowing for optimizations such as
pairwise exchange.

C. Related Works

Irregular communication bottlenecks many parallel appli-
cations, including sparse solvers and simulations. As a re-
sult, there has been a significant amount of research into
irregular communication optimizations. However, the majority
of research into irregular communication optimizes messages
after the communication pattern has been formed. Iterative
point-to-point communication has been optimized within MPI
through persistent communication [14], [15], which performs
initialization once before reusing the communicator, amortiz-
ing setup costs over all iterations. MPI 4.0 provides partition
communication [16], [17], an optimization for multithreaded
applications that allows each thread to send a portion of a
message when ready.

Many architecture-aware optimizations for irregular and col-
lective communication utilize locality to reduce communica-
tion costs. Locality-aware aggregation minimizes the number
and size of non-local messages, such as inter-node, through
local, such as intra-node, aggregation of data [2], [18], [19].
These node-aware aggregation techniques assume an iterative
nature to the communication, introducing overheads that are
offset during per-iteration communication reductions. They
would not yield performance gains for a dynamic exchange
such as SDDE due to these initial overheads. Node-aware
aggregation strategies, such as YGM, have also been applied
to graph operations [20]. YGM communicates data less fre-
quently to naturally aggregate messages, increasing the latency
but decreasing the message count.

Aggregation has been used in regular, global communica-
tion, including collectives and I/O. Hierarchical collectives
reduce inter-node communication costs by utilizing only one
or a small number of MPI processes per node during inter-
node communication [21], [22]. Further, multilane algorithms
have been applied to collective operations, minimizing the size
of inter-node messages, having each process per node send
an equal and minimal amount of data [23]. Locality-aware
aggregation has been applied to global all-to-all collectives
and similar global collective I/O operations as well [24]–[27].

Communication constraints can be minimized through opti-
mal partitions. Rather than a standard row-wise partition, graph
or hypergraph partitioners minimize edge cuts between parti-

tions [28]. Each partition is then assigned to a single process
or node, reducing the amount of data needed to be exchanged
throughout applications. While graph partitioners can be used
in combination with sparse dynamic data exchanges, the use
of these methods is outside the scope of this paper due to their
large overheads.

III. MPI EXTENSION APIS

A large variety of sparse dynamic data exchange implemen-
tations are used throughout existing parallel applications, with
each application required to determine the optimal method for
their program. This section presents the API that the authors
have added to an open-source MPI eXtension library, MPI
Advance. Existing methods and novel optimizations are added
within the provided APIs, allowing an existing application
to access any of the available optimizations rather than hand
optimize. Further, the API allows for future research in which
the optimal algorithm can be selected dynamically. Note that
sparse data exchanges exist within MPI through neighbor
collectives, but these methods do not allow for sparse dynamic
data exchanges.

Sparse dynamic data exchange algorithms can be repre-
sented with two separate APIs: MPIX_Alltoall_crs and
MPIX_Alltoallv_crs. All variables required for the APIs
are defined in Table I.

The MPIX_Alltoall_crs method allows for dynam-
ically exchanging constant data sizes with a sparse set of
neighbors. One use case of this method occurs when processes
know all data that must be sent to other processes, but have
no knowledge of the receive portion of the communication
pattern. This type of SDDE algorithm occurs within cell-based
adaptive mesh refinement solvers, such as CELLAR [3].

The MPIX_Alltoall_crs API is defined in Figure 3.
This method takes the send portion of the SDDE as input and
returns received data. The variable recv_nnz is both input
and output, allowing the user to input this information if it is
already known rather than requiring the method to redetermine
number of receives. Note the API is following current MPI
standard requirements, and as a result recvvals must be
allocated, potentially to some upper-bound, before the method
is instantiated.

The MPIX_Alltoallv_crs method provides an inter-
face for dynamically exchanging variable-sized data with a
sparse set of neighbors. This method is required for any
distributed sparse matrix operation, in which processes know



i n t M P I X A l l t o a l l c r s ( i n t send nnz ,
i n t * d e s t , i n t s endcoun t ,
MPI Datatype send type ,
vo id * s e n d v a l s , i n t * recv nnz ,
i n t * s r c , i n t r e c v c o u n t ,
MPI Datatype r e c v t y p e ,
vo id * r e c v v a l s , MPIX Info* x i n f o ,
MPIX Comm* xcomm )

Fig. 3: MPIX_Alltoall_crs API

all data that must be received, but have no knowledge of
processes to which they must send or what data must be sent to
each. As a result, a variable-sized message must be exchanged
containing this boundary information. Typically, this variable
SDDE is used to initially form a communication package to
then be used during each future sparse matrix operation, during
which communication is typically implemented either through
point-to-point messages or neighborhood collectives. Variable
SDDEs exist within many widely used solvers, including
Hypre BoomerAMG.

The MPIX_Alltoallv_crs API is defined in Figure 4.
Similar to the non-variable API, this method takes the send

i n t M P I X A l l t o a l l v c r s ( i n t send nnz ,
i n t s e n d s i z e , i n t * d e s t ,
i n t * s e n d c o u n t s , i n t * s d i s p l s ,
MPI Datatype send type ,
vo id * s e n d v a l s , i n t * recv nnz ,
i n t * r e c v s i z e , i n t * s r c ,
i n t * r e c v c o u n t s , i n t * r d i s p l s ,
MPI Datatype r e c v t y p e ,
vo id * r e c v v a l s , MPIX Info* x i n f o ,
MPIX Comm* comm)

Fig. 4: MPIX_Alltoallv_crs API

portion of the variable SDDE as input and returns received
data. The parameters recv_nnz and recv_size are both
input and output, allowing the user to input both receive count
and/or receive size if either is known. Due to MPI standard
requirements, this method also requires all pointers to be
returned by the method to be allocated before they are passed
to the method. This includes recvcounts and rdispls,
which each need to be allocated to hold recv_nnz integers at
minimum, as well as recvvals, which needs to be allocated
to hold at least recv_size variables of size recvtype.

IV. IMPLEMENTATIONS

There are several existing methods for determining the
communication pattern of a given irregular data exchange. The
personalized and non-blocking methods, described in detail

below, are widely used throughout existing parallel applica-
tions. Furthermore, an RMA-based optimization, as imple-
mented within CELLAR, allows for MPIX_Alltoall_crs
communication to be performed with one-sided commu-
nication. All algorithms presented in this section, ex-
cept for the RMA method, can be applied to both
the MPIX_Alltoall_crs and MPIX_Alltoallv_crs
methods, with minor changes required for the variable-
sized SDDE, as highlighted in red.

A. Personalized Method

The standard personalized method, utilized in a number
of irregular codebases and described in [7], is detailed in
Algorithm 1. The personalized protocol completes a sparse

Algorithm 1: Personalized
Input: rank {Process ID}

args {MPIX_Alltoallv_crs Arguments}

ctr← 0
for i← 0 to send_nnz do

proc = dest[i]
size = sendcounts[i]
sizes[proc] = size
MPI_Isend size at sendvals[ctr] to proc
ctr← ctr+ size

MPI Allreduce(sizes,MPI_SUM)

ctr← 0
while ctr < sizes[rank]

Probe for message and receive dynamically
ctr← ctr+ size of message

Wait for all sends to complete

dynamic data exchange by performing an MPI_Allreduce
to gather the total number and size of messages that every
process will receive during the dynamic communication phase.
Data to be exchanged is then communicated with non-blocking
sends. Finally, each process dynamically receives all messages
sent to it using MPI_Probe.

When process counts are large, the overhead of the
MPI_Allreduce increases. However, as message count
increases, the reduction overhead is quickly outweighed by
the dynamic exchange of data. The use of probes requires
received data to be added to the unexpected message queue,
further reducing performance for large messages. However,
the MPI_Allreduce can yield large benefits as it allows all
communication structures to be allocated before the dynamic
communication step.

B. Non-blocking Method

The non-blocking method, presented in Torsten et al. [7]
and detailed in Algorithm 2, is a modification of the standard
algorithm which avoids the overhead and collective synchro-
nization required by the MPI_Allreduce.



Algorithm 2: Non-blocking
Input: rank {Process ID}

args {MPIX_Alltoallv_crs Arguments}

ctr← 0
for i← 0 to send_nnz do

proc = dest[i]
size = sendcounts[i]
MPI_Isend size at sendvals[ctr] to proc
ctr← ctr+ size

while All sends have not completed
if Non-blocking probe finds a message

Dynamically receive message

Non-blocking barrier
while Non-blocking barrier has not completed

if Non-blocking probe finds a message
Dynamically receive message

In this algorithm, each process p first sends non-blocking
synchronous sends to every process to which it must com-
municate. A synchronous send is only considered complete
when the destination process posts the associated receive. Each
process dynamically receives messages until the synchronous
sends have been completed on all processes. This is accom-
plished through MPI_Iprobe, which checks if a message
is available, and only then is data received. While checking
for messages, each process also tests its synchronous sends
for completion Once all messages sent from a process have
been received, that process calls a non-blocking barrier to
indicate that it is finished sending. This process continues
probing for messages until all processes have reached the
barrier, at which point all processes’ sends are received and
dynamic communication is completed. While the non-blocking
algorithm improves over the personalized method for large
process counts by reducing synchronization and cost asso-
ciated with the MPI_Allreduce, communication pattern
structures must now be dynamically allocated. Furthermore,
dynamic communication and unexpected messages remain a
dominant cost of the method.

C. RMA Constant-Size SDDE

One-sided optimizations exist for sparse dynamic data ex-
changes in which all data is of a constant size, as implemented
in CELLAR and detailed in Algorithm 3. Each process first
allocates a shared memory window with enough space for
all processes to add sendcount values. Then, each process
can independently use MPI_Put to move the required data to
position rank · sendcount on each corresponding process.
Finally, each process can move received data from the window
into the recvvals array.

The one-sided approach requires window creation, but this
can be amortized over the cost of the application, and can po-
tentially be reused within any subsequent one-sided communi-

Algorithm 3: RMA (MPIX_Alltoall_crs only)
Input: rank {Process ID}

args {MPIX_Alltoall_crs Arguments}

Create window
Synchronize on window
proc_vals[num_procs× sendcount]
ctr← 0
for i← 0 to send_nnz do

proc← dest[i]
orig_address← sendvals[ctr]
dest_address←
proc_vals[rank× sendcount]
MPI_Put sendcount values from
orig_address to dest_address
ctr← ctr+ sendcount

Synchronize on window
for i← 0 to num_procs do

val← proc_vals[i× sendcount]
if val

recvvals[recv_nnz++]← val

cation. There is also a synchronization required to use a shared
memory window. The authors currently use MPI_Fence for
this, but more optimized forms of synchronization, such as
locks, could be explored. RMA sparse dynamic data exchanges
allow for all data to be exchanged without any dynamic MPI
communication. However, the method does not naturally ex-
tend to variable-sized dynamic data exchanges. It can be used
to determine communication sizes, followed by a standard
data exchange to avoid dynamic messages, but the authors
were unable to find a case where this would outperform
other methods due to large matching costs. It is possible,
however, that locality-aware data exchanges could improve
the performance of the subsequent data exchange, but this
optimization is outside the scope of this paper.

D. Locality-Aware Method

At large scales, the cost of both the personalized and
non-blocking methods are bottlenecked by the point-to-point
communication requirements. Irregular communication has
been extensively modeled and analyzed [2], [18], [19], show-
ing large costs associated with high inter-socket message
counts due to lower bandwidth than intra-socket messages,
injection bandwidth limits, queue search (or matching) costs,
and network contention. This irregular communication can be
optimized through locality-awareness, aggregating messages
within a region, such as a socket, to minimize the number of
messages communicated between regions. This greatly reduces
the number of times inter-region latency is incurred along
with associated queue search costs. While other locality-aware
techniques remove duplicate values to reduce inter-region
message sizes, this paper only concatenates messages as the
overhead of determining duplicate values would outweigh the



Algorithm 4: Locality-Aware Personalized
Input: rank {Process ID}

args {MPIX_Alltoallv_crs Arguments}

local_rank {Local rank of process within region}

region_size {Number of processes per region}

ctr← 0
for i← 0 to send_nnz do

proc = dest[i]
region = get_region(proc)
size = sendcounts[i]
Copy proc, size, and
sendvals[ctr:ctr+size] into buf[region]
ctr← ctr+ size

for each region to which rank sends
proc = region·region_size+local_rank
Non-blocking send of buf[region] to proc

MPI Allreduce(sizes)

ctr← 0
while ctr < sizes[rank]

Probe for message and receive dynamically
ctr← ctr+ size of message

for proc← 0 to region_size do
sizes[proc] = size of buf[proc]
Non-blocking send of buf[proc] to proc

MPI Allreduce(sizes)

ctr← 0
while ctr < sizes[rank]

Probe for message and receive dynamically
ctr← ctr+ size of message

Wait for all sends to complete

benefits of reduced message size within a single iteration of
communication, such as required during the SDDE problem.

This paper presents locality-aware aggregation for both
the personalized and non-blocking sparse dynamic data ex-
changes, as shown in Algorithms 4 and 5, respectively. Both
locality-aware optimizations consist of concatenating all mes-
sages that a process p must send to any process within a single
region. For example, the node-aware version of this method
would aggregate all messages that process p sends to any
process on node n, and send all data as a single message
to a corresponding process. The corresponding process is
determined to be the process in the region of destination with
the same local rank as the sending process p, where local rank
is determined as the rank of p within its region. For instance,
if there are PPN processes per region and ranks are laid out
sequentially across the regions, each process p has local rank
p mod PPN. A process with local rank r communicates only
with other processes of local rank r during the inter-region
step. Additional metadata, including the process of destination
and size of each message, is sent with the concatenated

Algorithm 5: Locality-Aware Nonblocking
Input: rank {Process ID}

args {MPIX_Alltoallv_crs Arguments}

local_rank {Local rank of process within region}

region_size {Number of processes per region}

for i← 0 to send_nnz do
proc = dest[i]
region = get_region(proc)
size = sendcounts[i]
Copy proc, size, and
sendvals[ctr:ctr+size] into buf[region]
ctr← ctr+ size

for each region to which rank sends
proc = region·region_size+local_rank
Non-blocking send of buf[region] to proc

while All sends have not completed
if Non-blocking probe finds a message

Dynamically receive buf from origin_proc
for each proc, size, indices in buf

Copy origin_proc, size, indices
into local_buf[proc]

Non-blocking barrier
while Non-blocking barrier has not completed

if Non-blocking probe finds a message
Dynamically receive buf from origin_proc
for each proc, size, indices in buf

Copy origin_proc, size, indices
into local_buf[proc]

for proc← 0 to region_size do
sizes[proc] = size of buf[proc]
Non-blocking send of buf[proc] to proc

MPI Allreduce(sizes)

ctr← 0
while ctr < sizes[rank]

Probe for message and receive dynamically
ctr← ctr+ size of message

Wait for all sends to complete

message.
After the inter-region communication is completed with

either the personalized or non-blocking approach, all data is
redistributed within the region. This is currently implemented
as a personalized algorithm due to the fact that there are
often a small number of processes within each socket or node,
and they typically will redistribute data to a large percentage
of other processes within the region. In recent years, the
number of cores per node has largely increased. On emerging
systems, such as sapphire rapids, it is possible that some
sparsity patterns would be better optimized with the non-
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Fig. 5: The cost of the various MPIX_alltoall_crs methods using Mvapich2.
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Fig. 6: The cost of the various MPIX_alltoall_crs methods using OpenMPI.
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Fig. 7: The cost of the various MPIX_alltoallv_crs methods using Mvapich2.
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Fig. 8: The cost of the various MPIX_alltoallv_crs methods using OpenMPI.

blocking algorithm within each region. Additional possible
optimizations include using an MPI_Alltoallv for dense
intra-region redistribution. However, as inter-region commu-
nication bottlenecks the SDDE, intra-region communication
optimizations are beyond the scope of this paper.

Note that the locality-aware methods assume a constant
number of processes per node. These algorithms could be
extended for variable sized node counts by finding the
smallest number of processes on any node, p, and sending
inter-node messages to local_rank mod p.

V. RESULTS

The section analyzes the performance of the various SDDE
algorithms across a subset of the largest 35 matrices from the
Suitesparse Matrix Collection with non-zero counts under 25
million. These matrices are small enough to be stored on just
two nodes but also large enough to be scaled out to 64 nodes.

Each matrix is partitioned row-wise across all available
processes so that each holds an equivalent number of rows.
The columns with non-zero values determine communication
requirements. For example, if process p holds a non-zero in
column n, and process q holds the row n, process p will send
a dynamic message to process q during the SDDE.

Two types of SDDE problems are tested.
1) Constant-Sized SDDE: If process p holds any non-zero

column corresponding to some process q, it will send a
dynamic message to q with the number of associated
non-zero columns. Therefore, each message within the
constant-sized SDDE is a single integer, representing
only the size of future steps of communication for the
given pattern.

2) Variable-Sized SDDE: If process p holds any non-
zero column corresponding to some process q, it will
send a dynamic message to q with the indices of all
associated non-zero columns. Therefore, each message
within the variable-sized SDDE is equal to the number
of corresponding non-zero columns and contains the

indices to be sent during future steps of communication
for the given pattern.

Two suitesparse matrices are scaled across nodes, from 2 to
64 nodes, showing the impact of process count on the various
SDDE approaches. These matrices are detailed in Table II.

Matrix # Rows # Cols, # Nonzeros
dielFilterV2clx 607,232 607,232 25,309,272

NLR 4,163,763 4,163,763 24,975,952

TABLE II: Matrix dimensions

A. Parallel Environment:

The SDDE algorithms are analyzed on the Quartz super-
computer at Lawrence Livermore National Lab. Each node
of Quartz contains two Intel Xeon E5-2695 v4 processors,
totaling 36 available CPU cores per node. All algorithms
are tested on both system versions of MPI available on
Quartz, OpenMPI 4.1.2, and Mvapich2 2.3.7. For simplicity,
32 processes per node are used in each test, allowing for power
of 2 process counts.

B. Constant-Sized SDDE

Figures 5 and 6 show the performance of the
MPIX_Alltoall_crs with OpenMPI and MVAPICH2,
respectively, for the two suitesparse matrices detailed in
Table II. The costs of the various MPIX_Alltoall_crs
algorithms are displayed as black lines, while the maximum
number of inter-node messages sent by any process are
displayed as red dots. The locality-aware SDDE methods
communicate only the aggregated number of inter-node
messages while the personalized, non-blocking, and RMA
approaches all communicate the standard message count. All
non-aggregated message sizes are a single integer.

For all matrices, the maximum number of inter-node mes-
sages is greatly decreased with aggregation. At the smallest
scales, the personalized method often outperforms the others.
The overhead of the required MPI_Allreduce is minimal
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Fig. 9: The cost of the various MPIX_alltoall_crs using Mvapich on 64 nodes. The dots represent measured times, the
dotted red line shows the speedup of the best locality-aware approach over the best standard approach, and the solid red line
shows the baseline speedup of 1.

at these smaller scales. Further, message counts are smaller,
reducing benefits of aggregation. As a result, the overhead of
aggregating data and sending extra intra-region communica-
tion does not pay off at the smallest scales.

At large scales, the locality-aware non-blocking SDDE
outperforms the other methods. The non-blocking approaches
do not require MPI_Allreduce operations, which become
expensive at larger scales. Further, aggregation greatly re-
duces message counts, outweighing overheads associated with
concatenating messages and increasing intra-region commu-
nication. The performance at all scales varies with MPI
implementation.

Figure 9 measures the performance of the various SDDE
algorithms on all 35 suitesparse matrices at the largest scale
of 64 nodes. The red dotted line shows the speedup of the best
locality-aware approach over the best standard approach. The
solid red line shows the baseline of 1. All 35 matrices achieve
speedup. As the cost of the SDDE increases, the speedup
associated with locality-aware SDDE approaches increases
accordingly. The constant-sized locality-aware SDDE achieves
up to 128x speedup, with an average speedup of 18x across
all matrices.

C. Variable-Sized SDDE

Figures 7 and 8 analyze the costs of the various
MPIX_Alltoallv_crs algorithms using OpenMPI and
MVAPICH2, respectively, scaling the two suitesparse matri-

ces detailed in Table II across various process counts. As
the variable-sized SDDE methods exchange indices to be
communicated in future exchanges, message sizes vary with
sparsity pattern. However, aggregation changes message sizes
within the SDDE only minimally, adding only metadata of
per-process message sizes to the aggregated messages. Both
the standard and aggregated message counts are equivalent to
those within the MPIX_Alltoall_crs tests. Note, there
are no RMA results as the RMA approach only applies to
MPIX_Alltoall_crs methods.

At small scales, the standard approaches outperform their
locality-aware counterparts, as aggregation only minimally
reduces message counts when few processes are involved.
As a result, the overhead of aggregating data and increasing
intra-node exchanges outweighs any benefits of aggregated
messages.

At larger scales, the locality-aware non-blocking SDDE
outperforms the other approaches for NLR. However, the
personalized method remains optimal for dielFilterV2clx. The
message counts vary drastically between the two sparsity pat-
terns, with dielFilterV2clx requiring only up to 100 messages
per process at the largest scale, which NLR requires nearly
2000. Locality-aware aggregation is much more impactful with
the larger message counts.

Figure 10 displays the cost of the SDDE algorithms on each
of the 35 suitesparse matrices at the largest scale of 64 nodes.
The red dotted line shows the speedup of the best locality-
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Fig. 10: The cost of the various MPIX_alltoallv_crs using Mvapich on 64 nodes. The dots represent measured times,
the dotted red line shows the speedup of the best locality-aware approach over the best standard approach, and the solid red
line shows the baseline speedup of 1.

aware approach over the best standard approach. The solid red
line shows the baseline of 1. Of the 35 matrices, 23 achieve
speedup, with a maximum speedup of 54x and an average
speedup of 14x.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The optimal sparse dynamic data exchange algorithm
varies with communication pattern, problem size, process
count, MPI implementation and architecture. As per-region
process counts increase, the potential for locality-aware opti-
mizations increases. The impact of locality-aware aggregation
increases with the number of original messages to a single
region, as they can be aggregated into a single message,
greatly reducing inter-region message count. Parallel appli-
cations with large irregular communication constraints are
expected to achieve significant benefits from locality-aware
SDDE algorithms at strong scaling limits. When tested across
64 nodes, with 32 processes per node, the locality-aware
approaches achieve up to over 50x speedup over the best
non-locality-aware approach for matrices with high message
counts, while incurring slowdown for matrices that have mini-
mal communication requirements. This impact is seen for both
the MPIX_Alltoall_crs and MPIX_Alltoallv_crs
methods. While this paper did not explore locality-aware
aggregation for the RMA method, similar concatenation strate-
gies could be used within MPI_Puts to reduce the synchro-
nization overheads as well as communication costs.

Future performance models are needed to dynamically se-
lect the optimal SDDE algorithm for given sparsity patterns
on each existing and emerging architecture. Furthermore, as
heterogeneous architectures increase in prevalence, the SDDE
algorithm should be adapted for these systems. There are an
increasingly large number of possible paths of data movement
on emerging systems, including GPUDirect, copying to a
single CPU, and copying portions of data to all available CPU
cores, which should be combined with existing algorithms to
optimize emerging heterogeneous architectures.
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