
Compressed Cannon’s Algorithm
1st Louis Jencka

Department of Computer Science)
University of New Mexico

Albuquerque, USA
ljencka@unm.edu

2nd Amanda Bienz
Department of Computer Science)

University of New Mexico
Albuquerque, USA

bienz@unm.edu

Abstract—Parallel matrix-matrix multiplication (GEMM) is
a linear-algebra operation underpinning many applications in
high-performance and scientific computing. With strong scaling,
GEMM’s communication latency among processes, nodes, and
accelerators can be a leading bottleneck in performance.

Data-compression is a common solution for reducing transport
costs, but is often not applied for this purpose in HPC, where
low-latency & high-throughput networks are difficult for com-
pressors to match. However, some parallel GEMM algorithms –
such as Cannon’s method – exhibit a communication pattern
where data is rarely altered as it travels between processes,
providing an opportunity for a simple compression strategy:
compress submatrices once at the outset, and then circulate
the compressed version. This minimizes compression, which is
typically significantly slower than decompression, at a price of
additional memory utilization.

In this work, we have measured and modeled scaling studies
of this strategy, using six existing and widely-used lossless
compressors (NDZip, ZStandard, Zip, BloscLZ, ZFP, & LZ4).
We find most of these compressors can improve communication
latency, with speedups of up to 1.2 times observed. Additionally,
we evaluate and discuss the accuracy of our model against our
measured results.

Index Terms—compression, matrix multiplication, cannon,
communication, HPC, MPI

I. INTRODUCTION

Parallel matrix-matrix multiplication (GEMM) is a linear-
algebra operation underpinning many applications in high-
performance and scientific computing.

With strong scaling of problem-size and process counts in
parallel GEMM, the communication costs between processes,
nodes, and accelerators can become a leading bottleneck in
overall latency. Data-compression is a common solution for
mitigating the costs of network communication, but is often
not used in contexts like HPC, where low-latency & high-
throughput networks are available.

Some parallel GEMM algorithms like Cannon’s method[1]
exhibit a pattern of communication wherein submatrices are
repeatedly sent between processes without being repartitioned
or otherwise altered. This presents an opportunity for an
efficient compression strategy: let all processes compress their
local submatrices once at the outset, and then reuse those
compressed versions for every subsequent exchange of data.

This strategy plainly reduces the number of compressor
operations, but importantly it minimizes the amount of time
spent compressing - which is a far more expensive operation
than decompression in most compressors. Additionally, a

dense GEMM algorithm such as Cannon’s is a better candidate
for compression than the sparse varieties, as sparse matrices
are inherently compressed by their encoding schemes.

We’ve undertaken a scaling study of this compressed variant
of Cannon’s algorithm using four general-purpose lossless
compressors (LZ4[2], BloscZ[3], Zip[4], & ZStandard[5]),
and two lossless compressors specialized for multidimensional
numerical arrays (ZFP[6] & NDZip[7]). Further, we have
developed a model for the communication costs of compressed
Cannon’s algorithm, and compare its predictions here with the
measured results from our scaling study. The main contribu-
tions of this paper are as follows:

1) A simple strategy for efficient compression within Can-
non’s algorithm, in which compression is minimized,

2) A comparison of compressed Cannon’s across six exist-
ing and widely-used compressors (NDZip, ZStandard,
Zip, BloscLZ, ZFP, & LZ4),

3) Measured and modeled scaling studies, showing the
impact of matrix size and process count on compressed
Cannon’s algorithm, and

4) An in-depth performance analysis of the proposed tech-
nique.

The remainder of the paper is outlined as follows. Sec-
tion II provides detailed background information on GEMM
algorithms, compression techniques, and related works. Im-
plementation details for the compressed Cannon’s algorithm
are presented in Section III and a corresponding model is
detailed in Section III-B. A performance study is presented in
Section IV, and concluding remarks are provided in Section V.

II. BACKGROUND

A. Cannon’s Algorithm

Matrix-matrix multiplication is a linear-algebra operation
that’s ubiquitous in computer science, and key to many high-
performance and scientific-computing applications. In these
latter contexts, parallel GEMM algorithms are frequently used
on distributed systems to handle large-scale problems.

There are many different algorithms for parallel GEMM,
but a common variety of approach is divide-and-conquer, in
which the problem is partitioned and scattered among a grid
of processes. In a 2D-grid strategy, matrices of C = A×B are
block-partitioned and apportioned among a Cartesian grid of




C1,1 C1,2 · · · C1,n

C2,1 C2,2 · · · C2,n

...
...

. . .
...

Cn,1 Cn,2 · · · Cn,n

 =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

. . .
...

An,1 An,2 · · · An,n

×

B1,1 B1,2 · · · B1,n

B2,1 B2,2 · · · B2,n

...
...

. . .
...

Bn,1 Bn,2 · · · Bn,n


Fig. 1: Two square matrices A and B are block-partitioned into n× n submatrices. Their product, C, would correspondingly
be computed blockwise. For example, the highlighted block C2,2 is calculated as C2,2 =

∑
k=1 nA2, k ×Bk, 2.

processes, such that the the submatrices of C may be locally
computed blockwise as Ci,j = Ai,kBk,j .

Figure 1 highlights how this approach works. Note that
calculating a given block of C requires knowledge of an
entire row of blocks from A and column of blocks from
B. When C is being computed in parallel, distributing entire
rows and columns to every process can be inefficient, and
in the case of very large matrices is often infeasible due to
memory constraints. There exists a trade-off between mem-
ory efficiency and communication efficiency which parallel
GEMM algorithms tackle in different ways.

Cannon’s algorithm is a parallel matrix-matrix multiplica-
tion method for dense matrices. It is a memory-efficient and
communication-avoiding approach; only one copy of the data
collectively stored among the processes, and that data is
communicated among the processes with an optimally minimal
number of messages.[1]

In Cannon’s algorithm, the matrices A and B are partitioned
into equally-sized blocks and are scattered to a grid of N
processes. Each process calculates the local portion Ci,j of
C = A×B in a piece-wise fashion, shifting blocks of A and
B round-robin to neighboring processes each step (Figure 1).

Algorithm 1: Cannon’s Algorithm
Input: A {local portion of A}

B {local portion of B}

row {local rank’s row in process grid}

col {local rank’s column in process grid}

Output: C {local portion of C}

// Initial Shift of A & B

shift left(A,i)
shift up(B,j)

// Iterative Multiply and Rotation

for j in 0..
√
n− 1 do

C += A· B

shift right(A,1)
shift down(B,1)

The shift method in Algorithm 1 communicates
sub-matrices across the process grid. For example,
shift_right(A[i;:], i) will cause each process
p to send its local block of A to the right by i processes, and
receive a replacement block of A from a process i positions
to the left (wrapping around as needed).

In evaluating and modelling compressed Cannon’s we will
frequently be discussing speedup. Speedup, in terms of latency,
is defined as Slatency =

Latencyold
Latencynew

.

B. Data Compression

Data compression algorithms are classified into two major
groups – lossless, and lossy. Lossless compressors are able to
perfectly reproduce data from its compressed form, whereas
lossy compressors will only produce an approximation. Be-
cause of their relaxed fidelity, lossy compressors are funda-
mentally able to achieve much greater reductions in size than
lossless compressors.

Several general-purpose lossless compressors were used in
this project. These include LZ4, ZStandard, Zip, and BLZ;
all of which are byte-oriented descendants of the LZ77
Lempel-Ziv compressor. This family of compression algo-
rithms operate by replacing repeated sequences of data with
references to earlier occurrences. We leveraged C-Blosc, a
”meta-compression” library, for its implementation of these
compression algorithms [3]. C-Blosc performs compression in
cache-sized chunks in order to minimize blocking, and addi-
tionally preprocesses blocks of data via a shuffling technique
to improve their compressability.

Our scaling study also included two specialized compres-
sion algorithms. ZFP[6] is a compression library and format
designed for multidimensional numerical arrays. ZFP supports
lossy and lossless compression modes; we used its lossless
mode in our study. NDZip[7] is a lossless compressor for
floating-point data, designed for high-throughput use in dis-
tributed HPC applications.

A common measure used in data compression is the
compression ratio of a compressor, which is calculated as
Compression Ratio = Uncompressed Size

Compressed Size .

C. Related Work

Rasouli et al. have written on compressing network commu-
nications in GEMM[8]. They’ve detailed and benchmarked a
novel divide-and-conquer GEMM for sparse matrices, along
with a compression scheme for the indices of their CSC-
stored matrices. Our work differs in that our focus is on dense
matrices, and in that we investigate the complete compression
of data for matrices A and B.

There has been significant research into compressing
communications for MPI-based (Message Passing Interface)
applications. This includes schemes for transparent adap-
tive compression[9], GPU-accelerated compression[10][11],
and compression-enhanced variants of MPI collective



operations[12][13]. The approach of offloading data to a GPU
for compression prior to sending over the network, as Zhou et
al. have done, is very promising and a potential future avenue
for our work.

In this paper we discuss Cannon’s algorithm as used for
GEMM on dense datasets; Solomonik and Demmel[14] pub-
lished on an extension of Cannon’s to a 2.5D topology, capable
of efficiently handling sparse data. The viability of lossless
compression for Cannon’s algorithm, as shown here, suggests
that a similar approach could be adapted to their work.

III. METHODS

A. Compressed Cannon’s

Pseudo-code for compressed Cannon’s algorithm can be
seen in Figure 2. For the most part, it’s identical to Cannon’s
algorithm as detailed in Figure 1. The main difference is that
the local blocks A and B are compressed at the outset, with all
further use of A and B requiring a decompression call. There
is an added cost of two calls to compress() and 2

√
n calls

to decompress(). Additionally there are increased memory
requirements – A′ and B′ need to be stored for each step, and
in the worst case these compressed copies could be of the
same size as uncompressed A and B themselves.

Algorithm 2: Compressed Cannon’s Algorithm
Input: A {local portion of A}

B {local portion of B}

row {local rank’s row in process grid}

col {local rank’s column in process grid}

Output: C {local portion of C}

// Compress local (i,j) blocks of matrices A and B

A’ ← compress(A)
B’ ← compress(B)

// Initial shift of blocks

shift left(A’, col)
shift up(B’, row)

// Multiply and Rotate

for i in 1..
√
n do

// Decompress received blocks

A ← decompress(A’)
B ← decompress(B’)

// Multiply currently-held blocks

C += A· B

// Shift blocks left and up

shift right(A’, 1)
shift down(B’, 1)

B. Model

We have devised a simple performance model for predicting
the communication latency of Cannon’s algorithm with com-
pression. We began with a standard postal model[15], which

predicts the latency T using a per-message latency α and a per-
byte transport cost β, coupled with the number of messages
n and the quantity of bytes transmitted s:

Tstandard = α · n+ β · s (1)

Tstandard can capture the communication costs of Cannon’s
algorithm, but with the addition of a compressor we need
to also account for the time spent on compressing and de-
compressing data, and the corresponding reduction in bytes
transmitted:

Tcompressed = α · n+
β · s
r

+
s

c ·mc
+

s

d ·md
(2)

where r is the compression ratio; mc is some positive real
number which captures the fraction of bytes transmitted that
are compressed; mc captures the fraction of bytes transmitted
which are decompressed; and c & d are the compression and
decompression rates in units of bytes per second.

In the case of Cannon’s algorithm, n, mc, md, and s can
be rewritten in terms of the number of processes p and the
problem size. Given a grid of p processes and two matrices of
size A bytes each, a process will exchange n = 4

√
p messages

totalling s = 4A√
p bytes. Only 2A

p bytes will be compressed
however, making mc = 2

√
p. As only the received messages

are decompressed, md = 2.

Tcannon = 4
√
p · α+

2A
√
p

(
2β

r
+

1

c · √p
+

1

d

)
(3)

Let’s consider only the cases where compression would be
more efficient, or those where Tcannon < Tstandard. This
inequality is reducible to the following relationship:(

τ =
r

r − 1
·
d+ c

√
p

2dc
√
p

)
< β (4)

The left-hand-side of this relation, which we’ll refer to as τ ,
captures the throughput a compressor is capable of achieving.

With increasing c
√
p, τ approaches 1

2d . Therefore with a
strong reuse of compressed messages (corresponding to a
large number of processes), or very fast compression (c),
the decompression-speed will become the limiting factor.
The decompression rate d is typically much greater than c,
so ameliorating the cost of compression by increasing

√
p

will correspondingly improve the margin of improvement in
throughput.

The compression ratio is also quite important in this re-
lation, as it determines how much faster than β the com-
pressor must be. For example, if a compressor is able to
reduce messages by 10% in size, than the aggregate compres-
sion/decompression rate must be about 10× smaller than β. If
the compressor can achieve a 20% reduction in size, than this
requirement drops to 5×.

IV. EXPERIMENTAL RESULTS



(a) Observed speedup in latency across all tested configuration of our benchmark. (b) Trends in Slatency by process count.

Fig. 2

A. Implementation

In this study we measured the communication costs for
compressed Cannon’s algorithm; this includes time spent on
compression, on decompression, and on MPI calls, as well as
the size of compressed and uncompressed messages. We used
the mean of these measurements, taken across MPI rank. Five
trials were performed for each configuration, with the best-
performing trial kept for analysis.

All testing was performed on a computer cluster at the
Center for Advanced Research Computing at the University
of New Mexico. Nodes in this cluster were equipped with
Intel Xeon Gold 6226R processors, with 32 cores per node,
and support for several SIMD instruction extensions (SSE1-4,
AVX, AVX2, AVX512). The network interconnect was a 1x
IniniBand HDR.

We profiled OpenMPI[16] on this cluster to determine
values of α and β for use in our modelling. We found a max-
imum throughput of approximately 53 Gbit/s for larger MPI
messages sent via a rendezvous strategy, and approximately
18 Gbit/s for smaller messaged sent eagerly. The coefficients
for α and β as described by the postal model are listed in
Figure 3.

MPI Strategy α β
Eager 0.000019 4.532× 10−9

Rendezvous 0.000624 1.494× 10−10

Fig. 3: Measured values for α and β, as used in equations
detailed in Sec. III-B. Two sets are given, corresponding to the
eager and rendezvous strategies used by MPI. For the instance
of MPI evaluated here, the eager strategy was used for all
messages smaller than 65536 bytes.

For data, we generated two-dimensional matrices of single-
precision floating-point numbers. These numbers were drawn
from a uniform distribution in the range [−1, 1]. A certain
percentage of the elements were zeroed, corresponding to the
”sparsity” parameter. The sizes of our matrices were chosen
to sample a power-of-two scaling, while sparsity was linearly
sampled between values of 0% & 50% (see Figure 5). We
used NumPy[17] and Pandas[18][19] in creating this dataset.

We evaluated compressed Cannon’s algorithm across 378
different configurations of parameters, covering a variety
of compressors, problem sizes, data sparsities, and process
counts. The sets of values tested are listed in Figure 5.

Compressor None, ZFP, LZ4, NDZip, BLZ,
ZStandard, Zip

Matrix Size 1024, 4096, 16384
MPI Task Count 16, 64, 256 (16 per node)
Data Sparsity 0%, 10%, 20%, 30%, 40%, 50%

Fig. 5: The cartesian-product of these parameters was tested
in our study, corresponding to 378 distinct configurations.

Measured Performance

Of the 378 configurations we tested, there were 31 which
resulted in a speedup of communication latency in comparison
with the no-compression case. Figure 2a shows the observed
speedups by configuration. Best performance was generally
correlated with increasing data sparsity and task counts.

Compressor Tasks Size Sparsity Slatency

BLZ 256 4096 0% 1.610785
Zip 256 1024 50% 1.277837
Zstd 256 1024 50% 1.275302
LZ4 256 4096 0% 1.222417
Zip 256 1024 40% 1.217530

Fig. 6: Top performing trials, by Compressor and data param-
eters.

Our study tested four general-purpose lossless compressors
– BLZ, LZ4, Zip, & Zstd – as well as two floating-point
compressors, NDZip and ZFP. Figure 4 contains several vi-
sualizations which help characterize the performance of the
compressors used in our study.

Reduction in message size, as captured by the compression
ratio, was strongly correlated with sparsity (Figure 4b). At
the point of 0% sparsity, we can see how these compressors
perform with very-dense floating-point data. Although these
data were randomly selected, their constrained range (U−1,1)



(a) The decompression-rates achieved by compressors
evaluated in our scaling study, in bytes per second.

(b) The measured reduction in size of submatrices due
to compression, relative to uncompressed Cannon’s.

(c) Measured compression & decompression rates for
each compressor, compared against the measured MPI
bitrates as are detailed in Figure 3.

Fig. 4

results in similar exponents in their underlying floating-point
encoding.

BLZ & LZ4 led by a significant margin in compression
and decompression rates (Figure 4c). Most of the tested com-
pressors were able to process data faster than the MPI-eager
bitrate, but none were able to surpass the MPI-rendezvous rate.

Model Evaluation

We can also evaluate the performance of these compressors
by computing their τ values, as described in Eq. 4. In Figure 7,
the distributions of τ is shown per compressor, as derived from
measured compressor attributes in our study. Interestingly,
NDZip straddles the βEager line, despite failing to achieve
a speedup in testing over uncompressed Cannon’s algorithm.
This is likely due to NDZip’s poor performance for the small
message sizes where βEager is applicable, as can be seen in
Figure 4a.

In addition to the scaling study performed and detailed
above, we modeled how compressed Cannon’s algorithm
might behave with stronger scaling. Figure 8 shows the
speedup in communication latency with up to 4096 processes,
for submatrices ranging from 1024 kB to 32768 kB in size.

Modest improvements in overall time spent are predicted, with
larger matrices benefiting more strongly.

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a variant of Cannon’s algorithm in
which communication is compressed, using a ”compress once,
reuse often” strategy. We undertook a scaling study of the
communication costs, finding that BLZ and LZ4 are strong
candidates for use in compressing floating-point data that
falls within MPI’s eager communication limit. Additionally,
we modeled further scaling by task-count and problem size,
predicting that both are positively correlated with a speedup
in latency.

In our future work we’ll consider lossy compression al-
gorithms, GPU-offloaded compression, and threaded com-
pressors. We will also be investigating the applicability of
similar compression strategies in sparse distributed GEMM
and algebraic multigrid applications.
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