
Background

Persistent and Partitioned MPI for Stencil Communication
Gerald Collom and Amanda Bienz, UNM Dept. of Computer Science

Algorithms Results

Point-to-Point Baseline

Persistent MPI Partitioned MPI

Stencil Communication

Persistent MPI

Weak Scaling

Strong Scaling

Scaling Ranks/Node

Message Size Scaling

- 20483 cell problem with message

sizes of 260k doubles, decreasing

with scale

- Persistent MPI: 37% speedup

- Partitioned MPI: up to 68% total

speedup

- Halo Exchange: the

communication of boundary

values between neighboring

processes

- Packing: copying data into a

contiguous message buffer

- Amortizes setup costs by e.g.

caching arguments

Partitioned MPI
- Partition messages to mark portions

as ready to send or check if received

- MPI + threads

- Early work, early communication

1) Initialization:

- Provide message info

- Once before exchanges

- Returns persistent request

2) Communication exchanges:

- Start persistent request and

wait for completion

- Repeat for each exchange

3) Cleanup:

- Free persistent requests

Persistent MPI Interfaces
- MPIPCL, System: Quartz (Intel

Xeon system at LLNL)

- Timed 1000 exchanges, 3 runs

- One core, two threads per

 MPI Process

- 5123 cells per process, 3 mesh

variables

- messages sizes of 524,288 doubles

- Persistent MPI: 16% speedup

- Partitioned MPI: 42% speedup

- 64 nodes, 32 active cores per node,

64 OpenMP threads per node

- 2048 x 4096 x 4096 cells

- Higher ranks/node → lower

threads/rank

- Persistent MPI: ~20% speedup

- Partitioned MPI: slowdown before

overtaking both other methods

- 4096 processes on 128 nodes

- Persistent MPI: matches baseline

for smaller messages, 21% faster for

largest tested message

- Partitioned MPI: baseline is 73%

faster for smaller messages,

partitioned MPI is 37% faster for

larger messages

	Slide 1

